
H5O_VISIT_BY_NAME1

 Expand all Collapse all

Jump to ...
Summary
Description
Example
Switch language ...
C
C++
FORTRAN
JAVA

Summary
Description
Example
JAVA
FORTRAN
C++
C

H5O_VISIT_BY_NAME1

Recursively visits all objects starting from a specified object

Procedure:
H5O_VISIT_BY_NAME1(loc_id, object_name, index_type, order, op, op_data, lapl_id)

Signature:

herr_t H5Ovisit_by_name1(hid_t loc_id, const char *object_name, H5_index_t index_type, H5_iter_order_t
order,H5O_iterate_t op, void *op_data, hid_t lapl_id)

SUBROUTINE h5ovisit_by_name_f(loc_id, object_name, index_type, order, &
 op, op_data, return_value, hdferr, lapl_id)
 USE, INTRINSIC :: ISO_C_BINDING
 IMPLICIT NONE
 INTEGER(HID_T) , INTENT(IN) :: loc_id
 CHARACTER(LEN=*), INTENT(IN) :: object_name
 INTEGER , INTENT(IN) :: index_type
 INTEGER , INTENT(IN) :: order

 TYPE(C_FUNPTR) :: op
 TYPE(C_PTR) :: op_data
 INTEGER , INTENT(OUT) :: return_value
 INTEGER , INTENT(OUT) :: hdferr
 INTEGER(HID_T) , INTENT(IN) , OPTIONAL :: lapl_id

Parameters:

https://confluence.hdfgroup.org/display/HDF5/.rm-navbar

hid_t loc_id IN: Location identifier; may be a file, group, dataset, named datatype
or attribute identifier

const char *object_name IN: Name of the object, generally relative to , that will serve as loc_id
root of the iteration

H5_index_t index_type IN: Type of index; valid values include:
 H5_INDEX_NAME
 H5_INDEX_CRT_ORDER

H5_iter_order_t order IN: Order in which index is traversed; valid values include:
 H5_ITER_DEC
 H5_ITER_INC
 H5_ITER_NATIVE

H5O_iterate_t op IN: Callback function passing data regarding the object to the calling
application

void *op_data IN: User-defined pointer to data required by the application for its
processing of the object

hid_t lapl_id IN: Link access property list identifier

Description:
H5O_VISIT_BY_NAME1 is a recursive iteration function to visit the object specified by the loc_id / object_name parameter pair and, if that
object is a group, all objects in and below it in an HDF5 file, thus providing a mechanism for an application to perform a common set of operations

H5L_ITERATEacross all of those objects or a dynamically selected subset. For non-recursive iteration across the members of a group, see .

The object serving as the root of the iteration is specified by the / parameter pair. specifies a file or an object in a loc_id object_name loc_id
file; specifies either an object in the file (with an absolute name based in the file’s root group) or an object name relative to object_name loc_i

. If fully specifies the object that is to serve as the root of the iteration, should be (a dot). (Note that when fud loc_id object_name '.' loc_id
lly specifies the the object that is to serve as the root of the iteration, the user may wish to consider using H5O_VISIT instead
of H5O_VISIT_BY_NAME.)

Two parameters are used to establish the iteration: and . index_type order

index_type specifies the index to be used. If the links in a group have not been indexed by the index type, they will first be sorted by that index
then the iteration will begin; if the links have been so indexed, the sorting step will be unnecesary, so the iteration may begin more quickly. Valid
values include the following:

H5_INDEX_NAME Alpha-numeric index on name

H5_INDEX_CRT_ORDER Index on creation order

Note that the index type passed in is a setting. If the application passes in a value indicating iteration in creation order index_type best effort
and a group is encountered that was not tracked in creation order, that group will be iterated over in alpha-numeric order by name, or . name order
(is the native order used by the HDF5 library and is always available.)Name order

order specifies the order in which objects are to be inspected along the index specified in . Valid values include the following: index_type

H5_ITER_INC Increasing order

H5_ITER_DEC Decreasing order

H5_ITER_NATIVE Fastest available order

The callback function and the effect of the callback function’s return value on the application are described in H5O_VISIT. op

The struct is defined in and described in the H5O_GET_INFO function entry. H5O_info_t H5Opublic.h

The parameter is a user-defined pointer to the data required to process objects in the course of the iteration. H5O_VISIT_BY_NAME1 op_data
This pointer is passed back to each step of the iteration in the callback function’s parameter. op_data

lapl_id is a link access property list. In the general case, when default link access properties are acceptable, this can be passed in as H5P_DEF
. An example of a situation that requires a non-default link access property list is when the link is an external link; an external link mayAULT

require that a link prefix be set in a link access property list (see H5P_SET_ELINK_PREFIX).

H5L_VISIT_BY_NAME and are companion functions: one for examining and operating on links; the other for examining H5O_VISIT_BY_NAME

and operating on the objects that those links point to. Both functions ensure that by the time the function completes successfully, every link or
object below the specified point in the file has been presented to the application for whatever processing the application requires.

Returns:
On success, returns the return value of the first operator that returns a positive value, or zero if all members were processed with no operator
returning non-zero.

On failure, returns a negative value if something goes wrong within the library, or the first negative value returned by an operator.

Example:
Coming Soon!

History:

Release Change

1.10.3 Function renamed to .H5Ovisit_by_name1

1.8.11 Fortran subroutine introduced in this release.

1.8.0 Function introduced in this release.

--- Last Modified: April 25, 2019 | 01:31 PM

Programming Note for C++ Developers Using C Functions:

If a C routine that takes a function pointer as an argument is called from within C++ code, the C routine should be returned from
normally.

Examples of this kind of routine include callbacks such as H5P_SET_ELINK_CB and H5P_SET_TYPE_CONV_CB and functions such
as H5T_CONVERT and H5E_WALK2.

Exiting the routine in its normal fashion allows the HDF5 C library to clean up its work properly. In other words, if the C++ application
jumps out of the routine back to the C++ “catch” statement, the library is not given the opportunity to close any temporary data
structures that were set up when the routine was called. The C++ application should save some state as the routine is started so that
any problem that occurs might be diagnosed.

	H5O_VISIT_BY_NAME1

